Ứng dụng E (số)

Lãi kép

Kết quả khi nhận lãi suất 20% mỗi năm trên khoản đầu tư 1.000 đô la theo nhiều chu kỳ tính lãi khác nhau

Jacob Bernoulli tìm ra hằng số e vào năm 1683 khi nghiên cứu một bài toán về lãi kép:[4]

Một tài khoản có số dư 1 đô la và nhận 100% lãi suất mỗi năm. Nếu lãi suất được tính một lần thì đến cuối năm, số dư của tài khoản đó là 2 đô la. Điều gì sẽ xảy ra khi lãi suất được tính và thanh toán thường xuyên hơn trong năm?

Nếu lãi được tính hai lần trong năm thì lãi suất cho mỗi 6 tháng sẽ là 50%, do đó 1 đô la ban đầu được nhân hai lần cho 1,5 để có 1,00 × 1,52 = 2,25 đô la vào cuối năm. Khi tính lãi theo quý thì ta có 1,00 × 1,254 = 2,4414… đô la, còn tính lãi theo tháng được 1,00 × (1 + 1/12)12 = 2,613035… đô la. Nếu có n khoảng thời gian tính lãi thì lãi suất trên mỗi khoảng là 100%/n và số dư vào cuối năm là 1,00 × (1 + 1/n)n.

Bernoulli nhận thấy chuỗi này tiến dần về một giới hạn với n càng lớn và khoảng thời gian tính lãi càng nhỏ. Tính lãi theo tuần (n = 52) được 2,692597... đô la, còn tính lãi theo ngày (n = 365) thì được 2,714567... đô la, chỉ nhiều hơn hai xu. Giới hạn khi n tăng lên chính là số e; khi tính lãi liên tục thì số dư của tài khoản tiệm cận đến 2,7182818... đô la.

Tổng quát hơn, một tài khoản có số dư ban đầu là 1 đô la và nhận lãi suất hằng năm là R thì sau t năm sẽ nhận được eRt đô la khi tính lãi liên tục.[15] (Ở đây R là một số thực bằng với lãi suất phần trăm hằng năm, do đó với lãi suất 5% thì R = 5/100 = 0,05.)

Phép thử Bernoulli

Biểu đồ xác suất P để một biến cố độc lập với xác suất xảy ra là 1/n không xảy ra sau n phép thử Bernoulli và so sánh 1 − P và n. Có thể thấy khi n tăng thì xác suất để một biến cố với xác suất xảy ra 1/n không xảy ra sau n lần thử tiệm cận rất nhanh về 1/e.

Số e cũng có ứng dụng trong lý thuyết xác suất, nảy sinh từ một vấn đề không liên quan rõ ràng với lũy thừa. Giả sử một người chơi một máy đánh bạc n lần và xác suất để thắng là một phần n. Với n lớn (chẳng hạn như một triệu) thì xác suất để người đó thua mọi lần gần bằng 1/e. Với n = 20 thì tỉ số này đã gần bằng 1/2,79.

Đó là một ví dụ về phép thử Bernoulli. Mỗi lần người đó chơi máy thì xác suất để thắng là một trên một triệu. Một triệu lần chơi như thế được mô hình hóa bằng phân phối nhị thức, vốn có liên hệ mật thiết với định lý nhị thứctam giác Pascal. Xác suất để thắng k lần trên một triệu lần chơi là

( 10 6 k ) ( 10 − 6 ) k ( 1 − 10 − 6 ) 10 6 − k . {\displaystyle {\binom {10^{6}}{k}}\left(10^{-6}\right)^{k}\left(1-10^{-6}\right)^{10^{6}-k}.}

Đặc biệt, xác suất để người đó không thắng lần nào (k = 0) là

( 1 − 1 10 6 ) 10 6 , {\displaystyle \left(1-{\frac {1}{10^{6}}}\right)^{10^{6}},}

rất gần với giới hạn

lim n → ∞ ( 1 − 1 n ) n = 1 e . {\displaystyle \lim _{n\to \infty }\left(1-{\frac {1}{n}}\right)^{n}={\frac {1}{e}}.}

Phân phối chuẩn tắc

Bài chi tiết: Phân phối chuẩn

Phân phối chuẩn với trung bình bằng 0 và độ lệch chuẩn bằng 1 được gọi là phân phối chuẩn tắc và được cho bởi hàm mật độ xác suất[16]

ϕ ( x ) = 1 2 π e − 1 2 x 2 . {\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}.}

Điều kiện phương sai bằng 1 (độ lệch chuẩn bằng 1) dẫn đến phân số 1/2 trong số mũ, và điều kiện tổng diện tích dưới đường cong ϕ(x) bằng 1 dẫn đến tỷ số 1 / 2 π {\displaystyle \textstyle 1/{\sqrt {2\pi }}} . Hàm số này đối xứng quanh x = 0, tại đó nó đạt giá trị lớn nhất 1 / 2 π {\displaystyle \textstyle 1/{\sqrt {2\pi }}} , và có các điểm uốn tại x = ±1.

Hoán vị vô trật tự

Một ứng dụng khác của e, vốn do Jacob Bernoulli và Pierre Raymond de Montmort tìm ra, nằm trong bài toán về hoán vị vô trật tự hay còn gọi là bài toán trả mũ.[17] Có n vị khách được mời đến một bữa tiệc và đều phải trả mũ của họ cho quản gia. Quản gia sẽ đặt số mũ này vào n hộp, mỗi hộp được ghi tên của một vị khách duy nhất. Nhưng quản gia lại không hỏi trước tên của các vị khách nên việc xếp mũ vào hộp được thực hiện một cách ngẫu nhiên. Bài toán của de Montmort là tìm xác suất để không có chiếc mũ nào được đặt đúng vào hộp của vị khách đó. Câu trả lời là

p n = 1 − 1 1 ! + 1 2 ! − 1 3 ! + ⋯ + ( − 1 ) n n ! = ∑ k = 0 n ( − 1 ) k k ! . {\displaystyle p_{n}=1-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+\cdots +{\frac {(-1)^{n}}{n!}}=\sum _{k=0}^{n}{\frac {(-1)^{k}}{k!}}.}

Khi số vị khách n tiến đến vô hạn thì pn tiệm cận về 1/e. Hơn nữa, số cách xếp mũ vào hộp để biến cố trên xảy ra là n!/e (làm tròn đến hàng đơn vị) với n là số dương.[18]

Bài toán kế hoạch tối ưu

Một gậy chiều dài L bị vỡ thành n mảnh có độ dài bằng nhau. Giá trị của n để tích các độ dài này lớn nhất là[19]

n = ⌊ L e ⌋ {\displaystyle n=\left\lfloor {\frac {L}{e}}\right\rfloor } hay n = ⌊ L e ⌋ + 1 , {\displaystyle n=\left\lfloor {\frac {L}{e}}\right\rfloor +1,}

vì x − 1 ln ⁡ x {\displaystyle x^{-1}\ln x} đạt giá trị lớn nhất tại x = e {\displaystyle x=e} (bài toán Steiner, xem dưới đây). Đại lượng x − 1 ln ⁡ x {\displaystyle x^{-1}\ln x} là một độ đo lượng thông tin thu được từ một biến cố xảy ra với xác suất 1 / x {\displaystyle 1/x} , do đó phép chia tối ưu trên xuất hiện trong các bài toán kế hoạch tối ưu, chẳng hạn như bài toán thư ký.

Tiệm cận

Số e xuất hiện khi liên hệ với nhiều bài toán liên quan đến tiệm cận. Một ví dụ là công thức Stirling về tiệm cận của hàm giai thừa có sự xuất hiện của cả hai số e và π:[20]

n ! ∼ 2 π n ( n e ) n . {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}

Từ đó

e = lim n → ∞ n n ! n . {\displaystyle e=\lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}.}

Tài liệu tham khảo

WikiPedia: E (số) http://braintags.com/archives/2004/07/first-10digi... http://www.subidiom.com/e http://jeff560.tripod.com/constants.html http://vanilla47.com/PDFs/Leonhard%20Euler/How%20E... http://mathworld.wolfram.com/e.html http://mathworld.wolfram.com/eApproximations.html http://www.math.dartmouth.edu/~euler/docs/original... http://www.dartmouth.edu/~chance/teaching_aids/boo... http://gallica.bnf.fr/ark:/12148/bpt6k56536t/f307.... http://id.loc.gov/authorities/subjects/sh93008168